
UPC Language Specifications
V1.1.1

Tarek A. El-Ghazawi
George Washington University

tarek@gwu.edu

William W. Carlson Jesse M. Draper
IDA Center for Computing Sciences

wwc@super.org jdraper@super.org

October 7, 2003

Acknowledgments

Many scientists have contributed to the ideas and concepts behind these
specifications. They are too many to mention here, but we would like to
cite the contributions of David E. Culler, Kathy Yelick, Eugene Brooks, and
Karen Warren who have contributed to the initial UPC language concepts
and specifications. We also would like to acknowledge the role of the partici-
pants in the first UPC workshop, held in May 2000 in Bowie, Maryland, and
in which the specifications of this version were discussed. In particular we
would like to acknowledge the support and participation of Compaq, Cray,
HP, Sun, and CSC. We would like also to acknowledge the abundant input
of Kevin Harris and Sébastien Chauvin and the efforts of Lauren Smith. The
efforts of Brian Wibecan and Greg Fischer were invaluable in bringing these
specifications to version 1.0.

Version 1.1 is the result of the contributions of many in the UPC commu-
nity, most importantly the participants in the second UPC workshop held in
March 2002 in Washington, DC. In addition to the continued support of all
those mentioned above, the efforts of Dan Bonachea were invaluable in this
effort.

2

Contents

Introduction 5

1 Scope 5

2 Normative references 5

3 Terms, definitions and symbols 6

4 Conformance 7

5 Environment 8
5.1 Conceptual Models . 8

5.1.1 Translation environment 8
5.1.2 Execution environment 8

6 Language 10
6.1 Notations . 10
6.2 Predefined identifiers . 11

6.2.1 THREADS . 11
6.2.2 MYTHREAD . 11
6.2.3 UPC MAX BLOCK SIZE 11

6.3 Expressions . 11
6.3.1 The upc localsizeof operator 11
6.3.2 The upc blocksizeof operator 12
6.3.3 The upc elemsizeof operator 13
6.3.4 Pointer-to-shared arithmetic 13
6.3.5 Cast and Assignment Expressions 15
6.3.6 Address Operators . 16

6.4 Declarations . 16
6.4.1 Type qualifiers . 17
6.4.2 The shared and reference type qualifiers 17
6.4.3 Declarators . 19

6.5 Statements and blocks . 23
6.5.1 Barrier Statements . 23
6.5.2 Iteration statements 25

6.6 Preprocessing directives . 27
6.6.1 UPC pragmas . 27

3

6.6.2 Predefined macro names 28

7 Library 28
7.1 Standard headers . 28
7.2 UPC utilities <upc.h> . 29

7.2.1 Termination of all threads 29
7.2.2 Shared memory allocation functions 29
7.2.3 Pointer-to-shared manipulation functions 32
7.2.4 Lock functions . 34
7.2.5 Shared string handling functions 37

References 40

A UPC versus C Standard section numbering 40

4

Introduction

1 UPC is a parallel extension to the C Standard. UPC follows the distributed
shared-memory programming paradigm. The first version of UPC, known as
version 0.9, was published in May of 1999 as technical report [CARLSON99]
at the Institute for Defense Analyses Center for Computing Sciences.

2 Version 1.0 of UPC has been initially discussed at the UPC workshop, held in
Bowie, Maryland, 18-19 May, 2000. The workshop had about 50 participants
from industry, government, and academia. This version was adopted with
modifications in the UPC mini workshop meeting held during Supercomput-
ing 2000, in November 2000, in Dallas, and finalized in February 2001.

3 Version 1.1 of UPC was initially discussed at the UPC workshop, held in
Washington, DC, 3-5 March, 2002, and finalized in March 2003.

1 Scope

1 This document focuses only on the UPC specifications that extend the C
Standard to an explicit parallel C based on the distributed shared memory
model. All C specifications as per ISO/IEC 9899 [ISO/IEC00] are considered
a part of these UPC specifications, and therefore will not be addressed in this
document.

2 Small parts of the C Standard [ISO/IEC00] may be repeated for self-containment
and clarity of a subsequent UPC extension definition.

2 Normative references

1 The following document and its identified normative references in addition
to these documents constitute provisions of these UPC specifications. This
will not apply to subsequent revisions of this document.

2 ISO/IEC 9899: 1999(E), Programming languages - C [ISO/IEC00]

3 The section numbering of this document is consistent with the previous doc-
ument [ISO/IEC00]. The correspondence between the subsection of this
document and the previous document, however, is given in Appendix A.

5

4 In the beginning of each UPC specifications subsection, the corresponding C
Standard [ISO/IEC00] subsection will be noted.

3 Terms, definitions and symbols

1 For the purpose of these specifications the following definitions apply.

2 Other terms are defined where they appear in italic type or on the left hand
side of a syntactical rule.

3.1

1 access
<execution-time action> to read or modify the value of an object by a thread.

3.1.1

1 local access
<execution-time action> to read or modify, by a given thread, the value of
an object in either the private space of that thread, or in the shared address
locations that have affinity to that thread.

3.1.2

1 private access
<execution-time action> to read or modify, by a given thread, the value of
an object in the private address space of that thread.

3.1.3

1 remote access
<execution-time action> to read or modify, by a given thread, the value of
an object whose address is in the shared address space portion which has
affinity to the other threads.

3.2

1 affinity
a logical association of a portion of the shared address space with a given
thread.

3.3

1 shared object
an object that resides in the shared address space.

6

3.4

1 pointer-to-shared
pointer to a shared object.

3.5

1 thread
a program task in execution with access not only to a private memory space,
but also to a shared memory space which can be accessed by other threads.

3.6

1 collective
a requirement placed on some language operations which constrains evalu-
ation of such operations to be matched1 across all threads. The behavior
of collective operations is undefined unless all threads execute the same se-
quence of collective operations.

3.7

1 single-valued
an operand to a collective operation, which has the same value on every
thread. The behavior of the operation is otherwise undefined.

3.8

1 phase
an unsigned integer value associated with a pointer-to-shared which indi-
cates the element-offset within an affinity block; used in pointer-to-shared
arithmetic to determine affinity boundaries.

4 Conformance

1 In this document, “shall” is to be interpreted as a requirement on a UPC
implementation; conversely, “shall not” is to be interpreted as a prohibition.

1A collective operation need not provide any actual synchronization between threads,
unless otherwise noted. The collective requirement simply states a relative ordering prop-
erty of calls to collective operations that must be maintained in the parallel execution trace
for all executions of any legal program. Some implementations may include unspecified
synchronization between threads within collective operations, but programs must not rely
upon such unspecified synchronization for correctness.

7

2 If a “shall” or “shall not” requirement of a constraint is violated, the behavior
will be undefined. Undefined behavior is indicated by “undefined behavior”
or by the omission of any explicit definition of behavior from the UPC spec-
ification.

5 Environment

5.1 Conceptual Models

5.1.1 Translation environment

5.1.1.1 Threads environment

1 A UPC program is translated under either a “static THREADS” environ-
ment or a “dynamic THREADS” environment. Under the static THREADS
environment, the number of threads to be used in execution is indicated to
the translator in an implementation-defined manner. If the actual execution
environment differs from this number of threads, the behavior of the program
is undefined.

5.1.2 Execution environment

1 This subsection provides the UPC parallel extensions of [ISO/IEC00: Sec.
5.1.2]

2 Each thread has local data storage on which it operates and which are logically
divided into a private portion and a shared portion. All accesses to objects in
the private portion of data storage are exactly as described in [ISO/IEC00].

3 Each thread may access shared data that have affinity to any thread; the
semantics of these accesses are described herein.

4 There is an implicit upc barrier at program startup and termination. Ex-
cept as explicitly specified by upc barrier operations or by certain library
functions (all of which are explicitly documented), there are no other barrier
synchronization guarantees among the threads.

Forward references: upc barrier (6.5.1).

8

5.1.2.1 Program startup

1 In the execution environment of a UPC program, derived from the hosted
environment as defined in the C Standard [ISO/IEC00], each thread calls the
UPC program’s main() function2.

5.1.2.2 Program termination

1 A program is terminated by the termination of all the threads3 or a call to
the function upc global exit().

2 Thread termination follows the C Standard definition of program termination
in [ISO/IEC00: Sec. 5.1.2.2.3]. A thread is terminated by reaching the }

that terminates the main function, by a call to the exit function, or by a
return from the initial main. Note that thread termination does not imply
the completion of all I/O and that shared data allocated by a thread either
statically or dynamically shall not be freed before UPC program termination.

Forward references: upc global exit (7.2.1).

5.1.2.3 Program execution

1 References to shared objects shall be either strict or relaxed. For relaxed
references there is no change to the C Standard execution model as applied to
an individual thread. This implies that translators are free to reorder and/or
ignore operations (including shared operations) as long as the restrictions
found in [ISO/IEC00: Sec. 5.1.2.3] are observed.

2 A further restriction applies to strict references. For each strict reference,
the restrictions found in [ISO/IEC00: Sec. 5.1.2.3] must be observed with
respect to all threads if that reference is eliminated (or reordered with respect
to all other shared references in its thread).

3 Equally, the behavior of strict shared references can be defined as follows.
Label each access to a shared object S(i,j) or R(i,j), where S represents a
strict shared access (read or modify), R represents a relaxed shared access

2e.g., in the program main(){ printf("hello"); } , each thread prints hello.
3A barrier is automatically inserted at thread termination.

9

(read or modify), i is the thread number making the access, j is an integer
which monotonically increases as the evaluation of the program (in the ab-
stract machine) proceeds from startup through termination. The “abstract
order” is a partial ordering of all accesses by all threads such that an access
x(a,b) occurs before y(c,d) in the ordering if a==c and b < d. The “actual
order(k)” for thread k is another partial order in which x(a,b) occurs before
y(c,d) if thread k observes the x access before it observes the y access. A
thread observes all accesses present in the abstract order which affect either
the data written to files by it or its input and output dynamics as described
in [ISO/IEC00: Sect 5.1.2.3]. The least requirements on a conforming im-
plementation are that:

• x(a,b) must “occur before” y(c,d) in actual order(e) if a == c and a
== e and b < d

• x(a,b) must “occur before” y(c,d) in actual order(e) if a == c and b <
d and ((x == S) or (y == S)), for all e

UNLESS such a restriction has no effect on either the data written into files
at program termination OR the input and output dynamics requirements
described in [ISO/IEC00: Sec. 5.1.2.3].

6 Language

6.1 Notations

1 In the syntax notation used in this clause, syntactic categories (nonterminals)
are indicated by italic type, and literal words and character set members
(terminals) by bold type. A colon (:) following a nonterminal introduces
its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by
the subscript “opt”, so that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not
italicized and words are separated by spaces instead of hyphens.

10

6.2 Predefined identifiers

1 This subsection provides the UPC parallel extensions of section 6.4.2.2 in
[ISO/IEC00].

6.2.1 THREADS

1 THREADS is a value of type int; it specifies the number of independent com-
putational units and has the same value on every thread. Under the static
THREADS translation environment, THREADS is an integer constant suitable
for use in #if preprocessing directives.

6.2.2 MYTHREAD

1 MYTHREAD is a value of type int; it specifies the unique thread index. The
range of possible values is 0..THREADS-14.

6.2.3 UPC MAX BLOCK SIZE

1 UPC MAX BLOCK SIZE is a predefined integer constant value. It indicates the
maximum value5 allowed in a layout qualifier for shared data. It shall be
suitable for use in #if preprocessing directives.

6.3 Expressions

1 This subsection provides the UPC parallel extensions of section 6.5 in [ISO/IEC00].

6.3.1 The upc localsizeof operator

upc localsizeof unary-expression

upc localsizeof (type-name)

4e.g., the program main(){ printf("%d ",MYTHREAD); } , prints the numbers 0 thru
THREADS-1, in some order.

5 e.g. shared [UPC MAX BLOCK SIZE+1] char x[UPC MAX BLOCK SIZE+1] and shared
[*] char x[(UPC MAX BLOCK SIZE+1)*THREADS] are compile errors.

11

Constraints

1 The upc localsizeof operator shall apply only to shared-qualified expres-
sions or shared-qualified types. All constraints on the sizeof operator
[ISO/IEC00 Section 6.5.3.4] also apply to this operator.

Semantics

1 The upc localsizeof operator returns the size, in bytes, of the local portion
of its operand, which may be a shared object or a shared-qualified type.
It returns the same value on all threads; the value is the maximum of the
size allocated to objects with affinity to any single thread. The result of
upc localsizeof is a compile-time constant.

2 The type of the result is size t.

3 If the the operand is an expression, that expression is not evaluated.

6.3.2 The upc blocksizeof operator

upc blocksizeof unary-expression

upc blocksizeof (type-name)

Constraints

1 The upc blocksizeof operator shall apply only to shared-qualified expres-
sions or shared-qualified types. All constraints on the sizeof operator
[ISO/IEC00 Section 6.5.3.4] also apply to this operator.

Semantics

1 The upc blocksizeof operator returns the block size of the operand, which
may be a shared object or a shared-qualified type. The block size is the
value specified in the layout qualifier of the type declaration. If there is no
layout qualifier, the block size is 1. The result of upc blocksizeof is a
compile-time constant.

2 If the operator of upc blocksizeof has indefinite block size, the value of
upc blocksizeof is 0.

3 The type of the result is size t.

4 If the the operand is an expression, that expression is not evaluated.

Forward references: indefinite block size (6.4.2).

12

6.3.3 The upc elemsizeof operator

upc elemsizeof unary-expression

upc elemsizeof (type-name)

Constraints

1 The upc elemsizeof operator shall apply only to shared-qualified expressions
or shared-qualified types. All constraints on the sizeof operator [ISO/IEC00
Section 6.5.3.4] also apply to this operator.

Semantics

1 The upc elemsizeof operator returns the size, in bytes, of the highest-level
(leftmost) type that is not an array. For non-array objects, upc elemsizeof

returns the same value as sizeof. The result of upc elemsizeof is a compile-
time constant.

2 The type of the result is size t.

3 If the the operand is an expression, that expression is not evaluated.

6.3.4 Pointer-to-shared arithmetic

1 When an expression that has integer type is added to or subtracted from a
pointer-to-shared, the result has the type of the pointer-to-shared operand. If
the pointer-to-shared operand points to an element of a shared array object,
and the shared array is large enough, the result points to an element of the
shared array. If the shared array is declared with indefinite block size, the
result of the pointer-to-shared arithmetic is identical to that described for
normal C pointers in [ISO/IEC00 sec. 6.5.6], except that the thread of the
new pointer shall be the same as that of the original pointer and the phase
component is defined to always be zero. If the shared array has a definite
block size, then the following example describes pointer arithmetic:

shared [B] int *p, *p1; /* B a positive integer */

int i;

p1 = p + i;

13

2 After this assignment the following equations must hold in any UPC imple-
mentation. In each case the div operator indicates integer division rounding
towards negative infinity and the mod operator returns the nonnegative re-
mainder:6

upc_phaseof(p1) == (upc_phaseof(p) + i) mod B

upc_threadof(p1) == (upc_threadof(p)

+ (upc_phaseof(p) + i) div B) mod THREADS

3 In addition, the correspondence between shared and private addresses and
arithmetic is defined using the following constructs:

T *P1, *P2;

shared T *S1, *S2;

P1 = (T*) S1; /* legal if S1 has affinity to MYTHREAD */

P2 = (T*) S2; /* legal if S2 has affinity to MYTHREAD */

4 For all S1 and S2 that point to two distinct elements of the same shared array
object which have affinity to the same thread:

• S1 and P1 shall point to the same object.

• S2 and P2 shall point to the same object.

• The expression ((upc addrfield (S2) - upc addrfield(S1)) shall eval-
uate to the same value as ((P2 - P1) * sizeof(T)).

• If S1 < S2 then upc addrfield(S1) shall be < upc addrfield(S2)

otherwise upc addrfield(S1) shall be > upc addrfield(S2)

5 Two compatible pointers-to-shared which point to the same object (i.e. hav-
ing the same address and thread components) shall compare as equal accord-
ing to == and !=, regardless of whether the phase components match.

Forward references: upc threadof (7.2.3.1), upc phaseof (7.2.3.2), upc addrfield

(7.2.3.4).

6The C “%” and “/” operators do not have the necessary properties

14

6.3.5 Cast and Assignment Expressions

Constraints

1 A shared type qualifier shall not appear in a type cast of an object that is
not shared-qualified, with the exception of the null pointer-to-shared.7

2 The cast of a pointer-to-shared to a pointer-to-private by a thread not having
affinity with the referenced object has an undefined result.

Semantics

1 The casting or assignment from one pointer-to-shared to another in which
either the type size or block size differs results in a pointer with a zero phase,
unless one of the types is “shared void *”, the generic pointer-to-shared.

2 If a generic pointer-to-shared is cast to a non-generic pointer-to-shared type
with indefinite block size or with block size of one, the result is a pointer
with a phase of zero. Otherwise, if the phase of the former pointer value is
not within the range of possible phases of the latter pointer type, the result
is undefined.

3 If a pointer-to-shared is cast8 to a pointer-to-private9 and the affinity of the
shared data is not to the current thread, the result is undefined.

3 After the assignment

shared [B] T *s;

s = 0;

s is a null pointer-to-shared10, and the operators upc threadof(s) and
upc phaseof(s) evaluate to zero for all block sizes B.

7i.e., pointers-to-private cannot be cast to pointers-to-shared.
8As such pointers are not type compatible, explicit casts are required.
9References through such cast pointers behave exactly as if they were accesses to private

objects.
10[ISO/IEC00] sec 6.3.2.3 and 6.5.16.1 imply that an implicit cast is allowed for zero

and that all null pointers-to-shared compare equal.

15

6.3.6 Address Operators

Semantics

1 When the unary & is applied to a shared structure element of type T, the
result has type shared [] T *.

6.4 Declarations

1 UPC extends the declaration ability of C to allow shared types, shared data
layout across threads, and ordering constraint specifications.

Constraints

1 The declaration specifiers in a given declaration shall not include, either
directly or through one or more typedefs, both strict and relaxed.

2 The declaration specifiers in a given declaration shall not specify more than
one block size, either directly or indirectly through one or more typedefs.

Syntax

1 The following is the declaration definition as per [ISO/IEC00] section 6.7, re-
peated here for self-containment and clarity of the subsequent UPC extension
specifications.

2 declaration:

declaration-specifiers init-declarator-listopt ;

3 declaration-specifiers:

storage-class-specifier declaration-specifiersopt

type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

function-specifier declaration-specifiersopt

4 init-declarator-list:

init-declarator

init-declarator-list , init-declarator

5 init-declarator:

declarator

16

declarator = initializer

Forward references: strict and relaxed type qualifiers (6.4.2).

6.4.1 Type qualifiers

1 This subsection provides the UPC parallel extensions of section 6.7.3 in
[ISO/IEC00].

Syntax

1 type-qualifier:

const

restrict

volatile

shared-type-qualifier

reference-type-qualifier

6.4.2 The shared and reference type qualifiers

Syntax

1 shared-type-qualifier:

shared layout-qualifieropt

2 reference-type-qualifier:

relaxed

strict

3 layout-qualifier:

[constant-expressionopt]

[*]

Constraints

1 A reference type qualifier shall appear in a qualifier list only when the list
also contains a shared type qualifier.

17

2 A shared type qualifier can appear anywhere a type qualifier can appear
except that it shall not appear in the specifier qualifier list of a structure
declaration unless it qualifies a pointer type.

3 A layout qualifier of [*] shall not appear in the declaration specifiers of a
pointer.

4 A layout qualifier shall not appear in the type qualifiers for a pointer to void
type.

Semantics

1 An object that has shared-qualified type is a shared object.

2 References to shared objects, either directly or via pointer-to-shared indirec-
tion, shall be either strict or relaxed. Strict and relaxed references behave as
described in section 5.1.2.3 of this document.

3 A reference shall be determined to be strict or relaxed as follows. If the
referenced type is strict-qualified or relaxed-qualified, the reference shall be
strict or relaxed, respectively. Otherwise the reference shall be determined
to be strict or relaxed by the UPC pragma rules, as described in section 6.6.1
of this document.

4 The layout qualifier dictates the blocking factor for the type being shared
qualified. This factor is the nonnegative number of consecutive elements
(when evaluating pointer-to-shared arithmetic and array declarations) which
have affinity to the same thread. If the optional constant expression is 0 or
is not specified, all objects have affinity to the same thread. If there is no
layout qualifier, the blocking factor has the default value (1). The blocking
factor is also referred to as the block size.

5 A layout qualifier indicating that all array elements have affinity to the same
thread is said to specify indefinite block size.

6 The block size is a part of the type compatibility11

7 A shared void* pointer is assignment compatible with any pointer-to-shared
type.

8 If the layout qualifier is of the form ‘[*]’, the shared object is distributed
as if it had a block size of

11This is a powerful statement which allows, for example, that in an implementation
sizeof(shared int *) may differ from sizeof (shared [10] int *) and if T and S
are pointer-to-shared types with different block sizes, then T* and S* cannot be aliases.

18

(sizeof(a) / upc_elemsizeof(a) + THREADS - 1) / THREADS,

where ‘a’ is the array being distributed.

9 EXAMPLE 1: declaration of a shared scalar

strict shared int y;

strict shared is the type qualifier.

10 EXAMPLE 2: automatic storage duration

void foo (void) {

shared int x; /* a shared automatic variable is not allowed */

shared int* y; /* a pointer to shared is allowed */

int * shared z; /*a shared automatic variable is not allowed*/

... }

11 EXAMPLE 3: inside a structure

struct foo {

shared int x; /* this is not allowed */

shared int* y; /* a pointer to a shared object is allowed */

};

Forward references: shared array (6.4.3.2), pointer declarator (6.4.3.1).

6.4.3 Declarators

Syntax

1 The following is the declarator definition as per [ISO/IEC00] section 6.7.5, re-
peated here for self-containment and clarity of the subsequent UPC extension
specifications.

2 declarator:

pointeropt direct-declarator

3 direct-declarator:

19

identifier

(declarator)

direct-declarator [type-qualifier-listopt assignment-expressionopt]

direct-declarator [static type-qualifier-listopt assignment-expression]

direct-declarator [type-qualifier-list static assignment-expression]

direct-declarator [type-qualifier-listopt *]

direct-declarator (parameter-type-list)

direct-declarator (identifier-listopt)

4 pointer:

* type-qualifier-listopt

* type-qualifier-listopt pointer

5 type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier

Constraints

1 No type qualifier list shall specify more than one block size, either directly or
indirectly through one or more typedefs.12

2 No type qualifier list shall include both strict and relaxed either directly
or indirectly through one or more typedefs.

3 shared shall not appear in a declarator which has automatic storage duration,
unless it qualifies a pointer type.

Semantics

1 All static non-array shared-qualified objects have affinity with thread zero.

2 Only pointer type members of a structure or union may be shared-qualified.13

12While layout qualifiers are most often seen in array or pointer declarators, they are
legal in all declarators. For example, shared [3] int y is a legal declarator.

13E.g., struct S1 { shared char * p1; }; is legal, while struct S2 { char *
shared p2; }; is not.

20

6.4.3.1 Pointer declarators

1 This subsection provides the UPC parallel extensions of section 6.7.5.1 in
[ISO/IEC00].

Semantics

1 A shared reference which is cast to non-shared will lose all qualities pertaining
to being shared.

2 Shared objects with affinity to a given thread can be accessed by either
pointers-to-shared or pointers-to-private of that thread.

3 EXAMPLE 1:

int i, *p;

shared int *q;

q = (shared int *)p; /* is not allowed */

if (upc_threadof(q) == MYTHREAD)

p = (int *) q; /* is allowed */

6.4.3.2 Array declarators

1 This subsection provides the UPC parallel extensions of section 6.7.5.2 in
[ISO/IEC00].

Constraints

1 When a UPC program is translated in the “dynamic THREADS” environ-
ment and the type of the array is shared-qualified but not indefinite layout-
qualified, the THREADS lvalue shall occur exactly once in one dimension
of the array declarator (including through typedefs). Further, in such cases,
the THREADS lvalue shall only occur either alone or when multiplied by a
constant expression.

Semantics

1 Elements of shared arrays are distributed in a round robin fashion, by chunks
of block-size elements, such that the i-th element has affinity with thread
(floor (i/block size) mod THREADS).

2 In an array declaration, the type qualifier applies to the elements.

21

3 For any shared array, a, upc phaseof (&a) is zero.

4 EXAMPLE 1: declarations legal in either static or dynamic translation en-
vironments:

shared int x [10*THREADS];

shared [] int x [10];

5 EXAMPLE 2: declarations legal only in static translation environment:

shared int x [10+THREADS];

shared [] int x [THREADS];

shared int x [10];

6 EXAMPLE 3: declaration of a shared array

shared [3] int x [10];

shared [3] is the type qualifier of an array, x, of 10 integers. [3] is the
layout qualifier.

7 EXAMPLE 4:

typedef int S[10];

shared [3] S T[3*THREADS];

shared [3] applies to the underlying type of T, which is int, regardless of
the typedef. The array is blocked as if it were declared:

shared [3] int T[3*THREADS][10];

8 EXAMPLE 5:

shared [] double D[100];

All elements of the array D have affinity to thread 0. No THREADS dimension
is allowed in the declaration of D.

shared [] long *p;

x = p[i];

All elements referenced by subscripting or otherwise dereferencing p have
affinity to the same thread. That thread may be any thread; it does not
have to be thread 0.

22

6.5 Statements and blocks

1 This subsection provides the UPC parallel extensions of section 6.8 in [ISO/IEC00].

Syntax

1 statement:

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

synchronization-statement

6.5.1 Barrier Statements

Syntax

1 synchronization-statement:

upc notify expressionopt ;

upc wait expressionopt ;

upc barrier expressionopt ;

upc fence ;

Constraints

1 expression shall be an integer expression.

2 Each thread shall execute an alternating sequence of upc notify and upc wait

statements, starting with a upc notify and ending with a upc wait state-
ment. A synchronization phase consists of the execution of all statements
between the completion of one upc wait and the start of the next.

Semantics

1 A upc wait statement completes, and the thread enters the next synchroniza-
tion phase, only after all threads have completed the upc notify statement

23

in the current synchronization phase.14 upc wait and upc notify are col-
lective operations.

2 The upc fence statement is equivalent to a null strict reference. This insures
that all shared references issued before the fence are complete before any
after it are issued.15

4 A null strict reference is implied before a upc notify statement and after a
upc wait statement.16

5 The upc wait statement will generate a runtime error if the value of its
expression does not equal the value of the expression by the upc notify

statement for the current synchronization phase. No error will be generated
if either statement does not have an expression.

6 The upc wait statement will generate a runtime error if the value of its expres-
sion differs from any expression on the upc wait and upc notify statements
issued by any thread in the current synchronization phase. No error will be
generated from a “difference” involving a statement for which no expression
is given.

7 The upc barrier statement is equivalent to the compound statement17:

{ upc_notify barrier_value; upc_wait barrier_value; }

8 The barrier operations at thread startup and termination have a value of
expression which is not in the range of user expressible values.

9 EXAMPLE 1: The following will result in a runtime error:

{ upc_notify; upc_barrier; upc_wait; }

as it is equivalent to

{ upc_notify; upc_notify; upc_wait; upc_wait; }

14Therefore, all threads are entering the same synchronization phase as they complete
the upc wait statement.

15One implementation of upc fence may be achieved by a null strict reference: { static
shared strict int x; x = x;}

16This implies that shared references executed after the upc notify and before the
upc wait may occur in either the synchronization phase containing the upc notify or the
next on different threads.

17This equivalence is explicit with respect to matching expressions in semantic 6 and
collective status in semantic 1.

24

6.5.2 Iteration statements

1 This subsection provides the UPC parallel extensions of section 6.8.5 in
[ISO/IEC00].

Syntax

1 iteration-statement:

while (expression) statement

do statement while (expression) ;

for (expressionopt; expressionopt; expressionopt) statement

for (declaration-expressionopt; expressionopt) statement

upc forall (expressionopt; expressionopt; expressionopt; affinityopt)
statement

2 affinity:

expressionopt

continue

Constraints:

1 The expression for affinity shall have pointer-to-shared type or integer type.

Semantics:

1 upc forall is a collective operation in which, for each execution of the loop
body, the controlling expression and affinity expression are single-valued.18

2 The affinity field specifies the executions of the loop body which are to be
performed by a thread.

3 When affinity is of pointer-to-shared type, the loop body of the upc forall

statement is executed for each iteration in which the value of MYTHREAD equals
the value of upc threadof(affinity). Each iteration of the loop body is
executed by precisely one thread.

4 When affinity is an integer expression, the loop body of the upc forall

statement is executed for each iteration in which the value of MYTHREAD equals
the value affinity mod THREADS.

18Note that single-valued implies that all thread agree on the total number of iterations,
their sequence, and which threads execute each iteration.

25

5 When affinity is continue or not specified, each loop body of the upc forall

statement is performed by every thread and semantic 1 does not apply.

6 If the loop body of a upc forall statement contains one or more upc forall

statements, either directly or through one or more function calls, the con-
struct is called a “nested upc forall” statement. In a “nested upc forall”, the
outermost upc forall statement that has an affinity expression which is not
continue is called the “controlling upc forall” statement. All upc forall

statements which are not “controlling” in a “nested upc forall” behave as if
their affinity expressions were continue.

7 If the execution of any loop body of a upc forall statement produces a
side-effect which affects the execution of another loop body of the same
upc forall statement which is executed by a different thread19, the behavior
is undefined.

8 If any thread terminates or executes a upc barrier, upc notify, or upc wait

statement within the dynamic scope of a upc forall statement, the result is
undefined. If any thread terminates a upc forall statement using a break,
goto , or return statement, the result is undefined. If any thread enters
the body of a upc forall statement using a goto statement, the result is
undefined.20

9 EXAMPLE 1: Nested upc forall:

main () {

int i,j,k;

shared float *a, *b, *c;

upc_forall(i=0; i<N; i++; continue)

upc_forall(j=0; j<N; j++; &a[j])

upc_forall (k=0; k<N; k++; &b[k])

a[j] = b[k] * c[i];

}

This example executes all iterations of the “i” and “k” loops on every thread,

19This semantic implies that side effects on the same thread have defined behavior, just
like in the for statement.

20The continue statement behaves as defined in [ISO/IEC 00; Section 6.8.6.2].; equiv-
alent to a goto the end of the loop body.

26

and executes iterations of the “j” loop on those threads where upc threadof

(&a[j]) equals the value of MYTHREAD.

6.6 Preprocessing directives

1 This subsection provides the UPC parallel extensions of section 6.10 in
[ISO/IEC00].

6.6.1 UPC pragmas

Semantics

1 If the preprocessing token upc immediately follows the pragma, then no macro
replacement is performed and the directive shall have one of the following
forms:

#pragma upc strict

#pragma upc relaxed

2 These pragmas affect the strict or relaxed categorization of references to
shared objects where the referenced type is neither strict-qualified nor relaxed-
qualified. Such references shall be strict if a strict pragma is in effect, or
relaxed if a relaxed pragma is in effect.

3 Shared references which are not categorized by either referenced type or by
these pragmas behave in an implementation defined manner in which ei-
ther all such references are strict or all are relaxed. Users wishing portable
programs are strongly encouraged to categorize all shared references either
by using type qualifiers, these directives, or by including upc strict.h or
upc relaxed.h.

4 The pragmas shall occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When
they are outside external declarations, they apply until another such pragma
or the end of the translation unit. When inside a compound statement,
they apply until the end of the compound statement; at the end of the
compound statement the state of the pragmas is restored to that preceding

27

the compound statement. If these pragmas are used in any other context,
their behavior is undefined.

6.6.2 Predefined macro names

1 The following macro name shall be defined by the implementation:

UPC The integer constant 1, indicating a conforming implementation.

UPC VERSION The integer constant 200310L.

2 The following macro names are conditionally defined by the implementation:

UPC DYNAMIC THREADS The integer constant 1 in the dynamic THREADS
translation environment, otherwise undefined.

UPC STATIC THREADS The integer constant 1 in the static THREADS
translation environment, otherwise undefined.

7 Library

7.1 Standard headers

1 This subsection provides the UPC parallel extensions of section 7.1.2 in
[ISO/IEC00].

2 The standard headers are

<upc_strict.h>

<upc_relaxed.h>

<upc.h>

3 upc strict.h shall contain at least:

#pragma upc strict

#include <upc.h>

4 upc relaxed.h shall contain at least:

#pragma upc relaxed

#include <upc.h>

28

7.2 UPC utilities <upc.h>

1 This subsection provides the UPC parallel extensions of section 7.20 in
[ISO/IEC00]. All of the characteristics of library functions described in sec-
tion 7.1.4 in [ISO/IEC00] apply to these as well.

7.2.1 Termination of all threads

Synopsis

upc_global_exit(int status)

Description

1 upc global exit() flushes all I/O, releases all storage, and terminates the
execution for all active threads.

7.2.2 Shared memory allocation functions

1 The UPC memory allocation functions return, if successful, a pointer-to-
shared which is suitably aligned so that it may be assigned to a pointer-to-
shared of any type. The pointer has zero phase and points to the start of the
allocated space. If the space cannot be allocated, a null pointer-to-shared is
returned.

7.2.2.1 The upc global alloc function

Synopsis

1 #include <upc.h>

shared void *upc_global_alloc(size_t nblocks, size_t nbytes);

nblocks : number of blocks

nbytes : block size

Description

1 The upc global alloc allocates shared space compatible with the declara-
tion:

29

shared [nbytes] char[nblocks * nbytes].

2 The upc global alloc function is not a collective function. If called by
multiple threads, all threads which make the call get different allocations. If
nblocks*nbytes is zero, the result is a null pointer-to-shared.

7.2.2.2 The upc all alloc function

Synopsis

1 #include <upc.h>

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

nblocks : number of blocks

nbytes : block size

Description

1 upc all alloc is a collective function with single-valued arguments.

2 The upc all alloc function allocates shared space compatible with the fol-
lowing declaration:

shared [nbytes] char[nblocks * nbytes].

3 The upc all alloc function returns the same pointer value on all threads.
If nblocks*nbytes is zero, the result is a null pointer-to-shared.

4 The dynamic lifetime of an allocated object extends from the time any thread
completes the call to upc all alloc until any thread has deallocated the
object.

7.2.2.3 The upc alloc function

Synopsis

1 #include <upc.h>

shared void *upc_alloc(size_t nbytes);

nbytes : total number of bytes to allocate

30

Description

1 The upc alloc function allocates shared space of at least nbytes bytes with
affinity to the calling thread.

2 upc alloc is similar to malloc() except that it returns a pointer-to-shared
value. It is not a collective function. If nbytes is zero, the result is a null
pointer-to-shared.

7.2.2.4 The upc local alloc function deprecated

Synopsis

1 #include <upc.h>

shared void *upc_local_alloc(size_t nblocks, size_t nbytes);

nblocks : number of blocks

nbytes : block size

Description

1 The upc local alloc function is deprecated and should not be used. UPC
programs should use the upc alloc function instead. Support may be re-
moved in future versions of this specification.

2 The upc local alloc function allocates shared space of at least nblocks *

nbytes bytes with affinity to the calling thread. If nblocks*nbytes is zero,
the result is a null pointer-to-shared.

3 upc local alloc is similar to malloc() except that it returns a pointer-to-
shared value. It is not a collective function.

7.2.2.5 The upc free function

Synopsis

1 #include <upc.h>

void upc_free(shared void *ptr);

31

Description

1 The upc free function frees the dynamically allocated shared storage pointed
to by ptr. If ptr is a null pointer, no action occurs. Otherwise, if the
argument does not match a pointer earlier returned by the upc alloc,

upc global alloc, upc all alloc, or upc local alloc, function, or if the
space has been deallocated by a previous call, by any thread,21 to upc free,

the behavior is undefined.

7.2.3 Pointer-to-shared manipulation functions

7.2.3.1 The upc threadof function

Synopsis

1 #include <upc.h>

size_t upc_threadof(shared void *ptr);

Description

1 The upc threadof function returns the number of the thread that has affinity
to the shared object pointed to by ptr.

7.2.3.2 The upc phaseof function

Synopsis

1 #include <upc.h>

size_t upc_phaseof(shared void *ptr);

Description

1 The upc phaseof function returns the phase component of the pointer-to-
shared argument.

21i.e., only one thread may call upc free for each allocation

32

7.2.3.3 The upc resetphase function

Synopsis

1 #include <upc.h>

shared void *upc_resetphase(shared void *ptr);

Description

1 The upc resetphase function returns a pointer-to-shared which is identical
to its input except that it has zero phase.

7.2.3.4 The upc addrfield function

Synopsis

1 #include <upc.h>

size_t upc_addrfield(shared void *ptr);

Description

1 The upc addrfield function returns an implementation-defined value re-
flecting the “local address” of the object pointed to by the pointer-to-shared
argument.

7.2.3.5 The upc affinitysize function

Synopsis

1 #include <upc.h>

size_t upc_affinitysize(size_t totalsize, size_t nbytes,

size_t threadid);

totalsize: the total size of the allocation in bytes

nbytes: the number of bytes in a block

threadid: the thread whose affinitysize is to be evaluated

33

Description

1 upc affinitysize is a convenience function which calculates the exact size
of the local portion of the data in a shared object with affinity to a given
thread.

2 In the case of a dynamically allocated shared object, the totalsize argu-
ment shall be nbytes*nblocks and the nbytes argument shall be nbytes,
where nblocks and nbytes are exactly as passed to upc global alloc or
upc all alloc when the object was allocated.

3 In the case of a statically allocated shared object with declaration:

shared [b] t d[s];

the totalsize argument shall be s * sizeof (t) and the nbytes argument
shall be b * sizeof (t). If block size is unspecified, nbytes shall be 1. If
the block size is indefinite, nbytes shall be 0.

4 threadid shall be a value in 0..(THREADS-1).

7.2.4 Lock functions

7.2.4.1 Type

1 The type declared is

upc_lock_t

2 The type upc lock t is an opaque UPC type. upc lock t is a shared datatype
with incomplete type (as defined in section 6.2.5 of [ISO/IEC00]). Objects
of type upc lock t may therefore only be manipulated through pointers.

7.2.4.2 The upc global lock alloc function

Synopsis

1 #include <upc.h>

upc_lock_t *upc_global_lock_alloc(void);

34

Description

1 The upc global lock alloc function dynamically allocates a lock and re-
turns a pointer to it. The lock is created in an unlocked state.

2 The upc global lock alloc function is not a collective function. If called
by multiple threads, all threads which make the call get different allocations.

7.2.4.3 The upc all lock alloc function

Synopsis

1 #include <upc.h>

upc_lock_t *upc_all_lock_alloc(void);

Description

1 The upc all lock alloc function dynamically allocates a lock and returns
a pointer to it. The lock is created in an unlocked state.

2 The upc all lock alloc is a collective function. The return value on every
thread points to the same lock object.

7.2.4.4 The upc lock free function

Synopsis

1 #include <upc.h>

void upc_lock_free(upc_lock_t *ptr);

Description

1 The upc lock free function frees all resources associated with the dynam-
ically allocated upc lock t pointed to by ptr. If ptr is a null pointer, no
action occurs. Otherwise, if the argument does not match a pointer earlier
returned by the upc global lock alloc or upc all lock alloc function,
or if the lock has been deallocated by a previous call to upc lock free, the
behavior is undefined.

35

2 upc lock free succeeds regardless of whether the referenced lock is currently
unlocked or currently locked (by any thread).

3 Any subsequent calls to locking functions from any threads using ptr have
undefined effects.

7.2.4.5 The upc lock function

Synopsis

1 #include <upc.h>

void upc_lock(upc_lock_t *ptr);

Description

1 The upc lock function locks a shared variable, of type upc lock t, pointed
to by the pointer given as argument.

2 If the lock is not used by another thread, then the thread making the call
gets the lock and the function returns. Otherwise, the function keeps trying
to get access to the lock.

3 A null strict reference is implied after a call to upc lock().

4 If the calling thread is already holding the lock referenced by ptr (i.e., it
has previously locked it using upc lock() or upc lock attempt(), but not
unlocked it), the result is undefined.

7.2.4.6 The upc lock attempt function

Synopsis

1 #include <upc.h>

int upc_lock_attempt(upc_lock_t *ptr);

Description

1 The upc lock attempt function tries to lock a shared variable, of type
upc lock t, pointed to by the pointer given as argument.

36

2 If the lock is not used by another thread, then the thread making the call
gets the lock and the function returns 1. Otherwise, the function returns 0.

3 A null strict reference is implied after a call to upc lock attempt() that
returns 1.

4 If the calling thread is already holding the lock referenced by ptr (i.e., it
has previously locked it using upc lock() or upc lock attempt(), but not
unlocked it), the result is undefined.

7.2.4.7 The upc unlock function

Synopsis

1 #include <upc.h>

void upc_unlock(upc_lock_t *ptr);

Description

1 The upc unlock function frees the lock and does not return any value.

2 A null strict reference is implied before a call to upc unlock().

7.2.5 Shared string handling functions

7.2.5.1 The upc memcpy function

Synopsis

1 #include <upc.h>

void upc_memcpy(shared void *dst, shared const void *src,

size_t n);

Description

1 The upc memcpy function copies n characters from a shared object having
affinity with one thread to a shared object having affinity with the same
or another thread. If copying takes place between objects that overlap, the
behavior is undefined.

2 The upc memcpy function treats the dst and src pointers as if they had type:

37

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to another shared array object with
this type (the dst array).

7.2.5.2 The upc memget function

Synopsis

1 #include <upc.h>

void upc_memget(void *dst, shared const void *src, size_t n);

Description

1 The upc memget function copies n characters from a shared object with affin-
ity to any single thread to a private object on the calling thread. If copying
takes place between objects that overlap, the behavior is undefined.

2 The upc memget function treats the src pointer as if it had type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array
object with this type (the src array) to a private array object (the dst array)
declared with the type

char[n]

7.2.5.3 The upc memput function

Synopsis

1 #include <upc.h>

void upc_memput(shared void *dst, const void *src, size_t n);

38

Description

1 The upc memput function copies n characters from the a private object on
the calling thread to a shared object with affinity to any single thread. If
copying takes place between objects that overlap, the behavior is undefined.

2 The upc memput function is equivalent to copying the entire contents from a
private array object (the src array) declared with the type

char[n]

to a shared array object (the dst array) with the type

shared [] char[n]

7.2.5.4 The upc memset function

Synopsis

1 #include <upc.h>

void upc_memset(shared void *dst, int c, size_t n);

Description

1 The upc memset function copies the value of c, converted to an unsigned

char, to a shared object with affinity to any single thread. The number of
bytes set is n.

2 The upc memset function treats the dst pointer as if had type:

shared [] char[n]

The effect is equivalent to setting the entire contents of a shared array object
with this type (the dst array) to the value c.

39

References

[CARLSON99] W. W. Carlson, J. M. Draper, D.E. Culler, K. Yelick, E. Brooks,
and K. Warren. Introduction to UPC and Language Specification. CCS-TR-
99-157. IDA/CCS, Bowie, Maryland. May, 1999.

[ISO/IEC00] ISO/IEC. Programming Languages-C. ISO/IEC 9899. May, 2000.

A UPC versus C Standard section number-

ing

UPC specifications subsection C Standard specifications subsection
1 1
2 2
3 3
4 4
5 5
6 6

6.1 6.1
6.2 6.4.2.2
6.3 6.5

6.3.6 6.5.3.1
6.4 6.7

6.4.1 6.7.3
6.4.3 6.7.5
6.5 6.8
6.6 6.10
7 7

7.1 7.1.2

Table A1. Mapping UPC subsections to C Standard specifications
subsections

40

	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and symbols
	4 Conformance
	5 Environment
	5.1 Conceptual Models
	5.1.1 Translation environment
	5.1.2 Execution environment

	6 Language
	6.1 Notations
	6.2 Predefined identifiers
	6.2.1 THREADS
	6.2.2 MYTHREAD
	6.2.3 UPC_MAX_BLOCK_SIZE

	6.3 Expressions
	6.3.1 The upc_localsizeof operator
	6.3.2 The upc_blocksizeof operator
	6.3.3 The upc_elemsizeof operator
	6.3.4 Pointer-to-shared arithmetic
	6.3.5 Cast and Assignment Expressions
	6.3.6 Address Operators

	6.4 Declarations
	6.4.1 Type qualifiers
	6.4.2 The shared and reference type qualifiers
	6.4.3 Declarators

	6.5 Statements and blocks
	6.5.1 Barrier Statements
	6.5.2 Iteration statements

	6.6 Preprocessing directives
	6.6.1 UPC pragmas
	6.6.2 Predefined macro names

	7 Library
	7.1 Standard headers
	7.2 UPC utilities <upc.h>
	7.2.1 Termination of all threads
	7.2.2 Shared memory allocation functions
	7.2.3 Pointer-to-shared manipulation functions
	7.2.4 Lock functions
	7.2.5 Shared string handling functions

	References
	A UPC versus C Standard section numbering

